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Abstract 

I study the quantum mechaaics of = apin interacting with aa eavi- 
roameat. Although the evolution of the whole system is aaitary, the 
spin evolution is not. The system ir chosen so that the spin exhibits 
loss of quaatum coherence, or “wavefaactioa collapse”, of the sort 
usually usociated with a quaatwn meuuremeat. The system is ana- 
lyced from the point of view of the spia density matrix (or “Schmidt 
paths”), and also uing the consistent histories (or decohereaca faac- 
tioaal) approach. 

1 Introduction 

A cosmologist must face the issue of utilizing quantum mechanics without 
the benefit of an outside classical observer. By definition, there is nothing 
“outside” the universe! The traditional role of an outside classical observer 
is to cause “wavetimction collaprc”. This process causea a definite outcome 
of a qua&m measurement to be realized, with the probability for a given 
outcoma’&kmined by the initial wavefunction of the ryatem being mea- 
sured. ‘R’ia common to view this procesr as something that can not be 
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described by a wavefunction evolving according to a Schr&iinger equation, 
but which instead must be implemented “by hand”. 

There is a growing understanding that the essential features of wavc- 
function collapse co* be present in systems whose evolution is entirely uni- 
tary. Pioneering work on this subject has been done by Zeh 1973, Zarek 
1981, 1992,1986, Joos and Zeh 1985, and Unruh and Zurek 1989, building 
on ideas of Everett 1957, and von Neumann 1955 The key is the inclu- 
sion of an “environment” or “apparatus” within the Efilbert space being 
studied. A subsystem can exhibit the non-unitary aspects of wavefunction 
collapse even though the system as a whole evolves unitarily. The wave- 
function can then divide up into a number of different terms, each of which 
reflect a different “outcome”. When there is negligible interference among 
the Merent terms during subsequent evolution, the “definiteness” of the 
outcome is realized in a restricted sense: Each term evolves as if the others 
were “not there”, so a subsystem state within a given term evolves with 
“certainty” that its corresponding outcome is the only one. Nonetheless, 
the total wavefunction describes ail possible outcomes, and one is never 
singled out. 

In this work I study a two state ‘%pin” system (subsystem 2) coupled 
to a 25-state “environment” or “apparatus” system (subsystem 1). The 
dynamics and the initid state are chosen to give the following behavior: 
The initial state is 

Mii) = (a If), + bll)*) 8 WI, 

which evolves into the state 

(1) 

19j) = aIT), @ IYh + b Ill, @ I.% 
Where (YlZ) = 0. This type of evolution is central to the standard way of 
describing a quantum measurement in the absence of an outside classical 
obscrs&. Initially the spin subsystem is in a pure state, (a IT), + b II),). For 
the state I$/), the reduced density matrix of the spin (us s tir (I$f)(r/~tl)) 
has two non-zero cigenvzlues, and the eigenstates are 17) and 11). The spin 
is no longer in a pure state, but may be raid to be in 17) with probability 
a*u and 11) with probability Pb. 

In I$j) each of the spin states (IT) and 11)) is uniquely correlated with 
its own state of the environment (lY)r and lZ)r respectively) In this sense 

2 



the environment has “me=ured” the spin. The two terms in Eq (2) rep- 
resent the two possible “outcomes” of the measurement. The fact that 
initially the probability to find the spin in IT) or 11) is also u*a or b’b (re- 
spectively) illustrates that the measurement is “good”: The probabilities 
of the different outcomes can be predicted (ram the initial wavefunction of 
the spin. 

Another requirement of a good measurement is that 14,) does not evolve 
back into the form of I$i). This would amount to the environment “forget- 
ting” the outcome of the measurement. This property is also well exhibited 
by the toy model studied here. Other features which are needed to match 
our intuitive notion of a good quantum measurement have to do with in- 
teractions of more than two subsystems. For example, one would want 
agreement among many observers that a particular outcome has been re- 
alized. Models can be constructed which exhibit this efIect, but that is 
beyond the scope of thin work. 

The motivations for this work are twofold. The first goal is to develop 
some intuition as to what requirements one must place on the dynamics 
and initial state to produce the behavior just described. Secondly, I wish 
to explore the links between this approach and the “consistent histories” 
approach to the study of closed quantum systems (developed by GrifIiths 
1984, Omnes 1988, and G&Mann and Hartle 1990). ’ 

2 Results 

The analysis present&d here follows closely that of Albrecht 1992, and 
I refer you there for a description of the Hamiltonian and other details 
about the calculation. However, the results presented here are qualitatively 
different (see especially Section 6.3 of Albrecht 1992). 

(FOG those interested in the technicalities, here are the differences from 
Albra&l992z The environment is larger, with ni = 25, and the couplings 
areE&W.l,Es = .l and Er = 10. Most importantly, the initial envi- 
ronment atate is a coherent superposition of one dgawtate of If’ and one 
eigemtate of ,Rl, in equal proportions. It is thir diEerence which produces 
distinctively d&rent behavior. ) 

Figure 1 shows id&math about the spin es the whole system evolves. 
Initially, the state is given by Eq (l), with u = 0.7, b = 0.3. In the lower 
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plot, the solid curve gives pr, the largest eigenvalue of ps. It starts out at 
unity, as required by the “pure state” form of the initial conditions, and 
evolves to 0.7, where it holds steady. The dashed curve gives the entropy, 
S, of the spin (S = -f&i&g&is)]), m units where the maximum possible 
entropy is unity. The entropy starts out zero and increases. This is always 
the case when a system evolves from a pure to a mixed state. (Note the 
the combined “spin @ environment” system remains in a pure state, so it~ 
entropy is zero) 
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Figure 1: a: The solid curve is I(T I1)sI’, and the dashed curve gives 
(Tip2 IT). b: The solid curve is the largest eigenvalue of ps, the dashed 
curve is the entropy of the spin. 

In t&b upper plot, the dashed curve gives the overall probability for 
the sp&o be up, given by (flpz If). This quantity is a %onstant of the 
motion”; The solid curve gives l(T Il)SI’, where ll)s is the eigenstate of pa 
(or “Schmidt state”) corresponding to the largest eigenvalue. As discussed 
in Zeh 1973 and Albrecht 1992, the density matrix eigenstates correspond to 
a “Schmidt decomposition” of 14) (Schmidt 1907). When 14) is expanded 
in the dgcnstatea of ps and ~1, it always takes the form given by Eq (2), 
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with each eigenstate of ps uniquely correlated with an eigenstate of pt. 
This fact means the eigenstates of ps not only te.U about ps, but about the 
correlations with system 1 as well. The Schmidt states are said to trace 
out “Schmidt Paths” over time. 

Since I1)s belong to a two state Efilbert space, it is completely specked 
by I(T (l)sls, up to an overall phase. One can see that as the eigenvalue (pr) 
approaches 0.7, the eigenvector becomes essentially IT). Thus the behavior 
promised in the previous section (Eqs (1) and (2)) is reahsed to a good 
accuracy. 
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Figure 2: ‘A oklapsing wavefunction.” Each plot depicts an dgen- 
state of ps in terms of p(f) z I(7 li)l* and p(J) z I(1 li)l’. The columns 
correspond to three d&rent times. The two rows correspond to the two 

cigeIlstates. . 

Figure 2 is another reprcsenttation of the way the eigenstates of ps 
evdve. The first row represents ll)‘, and the second row represents the 
other eigenvector. The three c&mns correspond to three times+ The 
histogram in each plot provides two numbers, p(t) = I(7 11)ls and p(J) 3 
I(1 jl)ls for the first row, and similarly for the second eigenvector in the 
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second row. In this way one can visualise a “collapsing wavefunction” by 
following the eigenstates of pa. 

3 Consistent Histories 

I will now make contact with the “consistent histories” or “decoherence 
functional” approach to quantum mechanics of closed systems. Consider 
two projection operators: 

ii = ITXTI @ A; p, = 11x11@ 11 (3) 

where 1, is the identity operator in the environment subspace, and (IT), 11)) 
form an orthonormal ‘projection basis” which spans the spin subspace. 
These projection operators sum to unity: 

P, + @‘ = I. 

One can take the formal expression for the time evolution: 

(4) 

IW) = @%wN (5) 

and insert the unit operator (jr + $i) at will, resulting, for example, in the 
identity: 

1$5(t)) = (4 + @,)C-iH(t-*‘)(@~ + rQe-‘-I+(O)) (6) 
= ~Te-iw(t-:~)$,e-‘t I+(o)) + &e-*(t-:t)jLe-iH:x I+(o)) 

+$,e-~W~)j+e-~~~ I+(O)) + p,e-in(+td&e-“I I+(O)) (7) 

= IIf, Tl) + NT, 11) + IU, tl) + IL 11). (8) 
The last line just de&es (term by term) a shorthand notation for the prc 
vious I&e. Each term represents a particular choice of projection at each 
time,,& in that sense corresponds to a particular “path”. In the path 
integ&&rmuIation ,of quantum mechanics the time between projections _j s. 
is taken arbitrarily small, and the time evolution is viewed as a sum over 
paths. For present purposes, the time intervals can remain finite, reprc 
senting a ucoarse grain&g” in time. Each term in the above expression is 
called a “path projected state”, and the sum is a sum over coarse grained 
paths. 
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One attempts to assign the probability “([i, j][[i, j])” to the path [i, j], 
but to make sense, the probabilities must obey certain sum rules. For 
example, one can define 

IT> 4 z l[T, Tl) + HT, ll), (9) 
where the “.‘I signifies that no projection is made at 2t. One would want 
the probability for the path [t, .] to be the sum of the probabilities of the 
two paths of which it is composed: 

UT, 4[tl4 = (IT, TINT, Tl) + (IT, IIN?, 11) 

However, one can “square” Eq (9) to give the general result: 

(IT, NT, 4 = (it, Tlllt, tl) + UT, MT, 11) + (its ‘MT, 11) + ([f, lll[t, Tl) (11) 
Only if the last two terms in Eq (11) are small is the sum rule (Eq (10)) 
obeyed. When the relevant sum rules are obeyed the paths are said to 
give “consistent” or “decohering” histories. Advocates of this point of view 
argue that the only objects in quantum mechanics which make physical 
sense are sets of consistent histories. For a discussion of how this simple 
example links up with the (much more general) original work on. this subject 
(G&Ii&s 1984, Omnes 1988, and Gell-Mann and Hartle 1990)) see Albrecht 
1992. 

4 Testing for consistent histories 

Table la checks the prohabi& sum rule (Eq (10)) for the toy model whose 
evolution is depicted in Fig 1. The projection times are tt = .15, t = .2, and 
the projection basis is (IT), II)}. The sum rule is obeyed to the accuracy 
shown&fact, using the {It) , II)} projection basis, the sum rule is obeyed 
no mu&t which projection times are chosen. 

wt came as a surprise to me. After all the interesting behavior 
deswii in Figs 1 and 2, the consistent histories appmach telIs us that 
“1” and “1” paths are the right way to view the system, right through the 
period of Uwavefunction collapse”. 

Consider for a moment a static (H&on&t = 0) spin, not coupled to 
any environment. It turns out that as long as the same projection basis 
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Table la Table lb 

([tlll[tll) 0.00 ([I UP 4) 0.03 

UT dl[t 4 0.70 wll~~4 0.61 

% violation 0% % violation 25% 

Table 1: Testing the probability sum rule (Eq (10)) for different paths. For 
la the sum rules are obeyed for any choice of tt and t. For lb, ti = .035 
and t = 0.06 

is chosen at t and tt, one always gets consistent histories. This is true 
for any projection basis. One could choose (11) , 11)) or one could choose 
the projection basis {IQ, 1 I)}, where 12’) is the initial state of the spin 
(u It)s + b jJ)s), and 1 I) is the state orthogonal to it. A stat& spin would 
naturally result in unit probability for the [Z, z] path, and eero probability 
for all other paths. 

Table lb shows the results for the fully interacting spin, using the 
{II), 1 I)} projection basis, but otherwise the same as Table la. Clearly 
the snm rules are not obeyed in this case. When I presented this tallc, I 
felt that these results suggested the following link between the “setting up 
of correlations” described in Sections 1 and 2, and the consistent histories: 
The setting up of correlations tends to reduce number of different sets of 
consistuut histories, and help one single out a preferred choice of projection 
basis.. 

S*-then I have redbed that things are not so simple. For one, the 
space of possible choices of projection basis is extremely large, even for 
the simple example discussed here. I have found the following new sets of 
consistent histories which are not consistent for the static spin. One chooses 
the projection basis at tl to be the eigemtates of ps at that time, and the 
projection basis at t to be {If) , II)}. These histories are consistent to the 
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same accuracy as those shown in Table la, for any choice of ti and t. 
For this article, I will not try to conclude anything about numbers of 

sets of consistent histories in the static versus interacting cases. I will sim- 
ply remark that the special behavior of the correlations described by Eqs 
(1) and (2) does manifest itself in the consistent histories approach. It is 
interesting that this behavior does not show up in all consistent histories. 
After all, the (11) ,/I)} projection basis generates consistent histories which 
are indistiuguishable from those of au isolated static spin. With the indu- 
sion of the interactions, however, there are new sets of consistent histories 
(such as those described in the previous paragraph) which do refiect the 
special evolution of pa. 

5 Consistent Histories vs Schmidt Paths 

There is a view (well represented at this workshop) that says that cons.& 
tent histories are the only physically correct objects to discusr in quantum 
mechanics. I am often asked if following the density matrix (or Schmidt 
paths) amounts to an alternative “interpretation”. My present view is the 
following: The Schmidt analysis presented in the tint part of this paper 
describes the evolution of correlations among subsystems. It ,ia the point 
of view I am most familiar with. If I were to ask under what circum- 
stances the evolution of correlations is physically interesting, there would 
be a number of requirements, such as stability or simplicity of evolution, 
which would come into play. Under these circumstances I suspect that the 
two approaches should be essentially eqnivalcnt. 

For example, one could ask just what it means to follow the wavefunc- 
tion through the collapse process, as described in Fig 1 and 2 of this paper. 
Surely it means nothing unless someone or something makes an observation 
and “catches it in the act”. This would require interactions with a third 
syrte presumably proceeding in a similar manner to the measurement 
depi~%hre. Such an interaction would have an impact on the consistent 
histones. I suspect, for example, that the {If) ,]I)} would only remain a 
good projection basis during the collapse process if the new measurement 
was also made in the (17) , 11)) basis. 

In particular, I expect the equivalence of the two approaches to emerge 
from the role correlations among subsystems play in allowing the proba- 
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bihty sum rules to be obeyed. (This has been elaborated to some degree 
in Albrecht 1992.) However, I still would like to better understand the 
relationship between the two approaches. 

6 The arrow of time 

As has been noted, for example by Zurek 1982 and Zch 1971,1990, there is 
an arrow of time built into the dynamics discussed here. This is dramatized 
in Fig 3, which is identical to Fig 1, but with the x-axis extended back to t < 
0. One can seen that the pure “initial” (t = 0) state (which has zero entropy 
for the spin), is a very special state and the “collapse of the wavefunction” 
proceeds in the direction of increasing spin entropy. The t < 0 part of Fig 3 
illustrates an “un-collapsing” wavefunction, where the correlations present 
between spin and environment at early times are lost, and the pure state 
emerges at 1 = 0. Then, for positive values oft correlations zxe entablirhed 
again. The stability of these correlations (and thus the goodness of the 
measurement) depend on another such %ntmpy dip”, not occurring for 
t > 0. Even the simple system discussed here is complex enough for such 
entropy dips to occur very rarely. 

: 
: ,a: 
: : 
: : 
: : 

““““‘11”“‘l’l” 
: ,* 

-2 -.l 
(b) ’ TIJIU 

.1 .2 

Figure 3: The same plots as Fig 1 extended back to t = -2. 
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Aside from questions of stability, how fundamentally is the arrow of time 
linked to quantum measurement? The initial state, ‘l+i) has sero entropy 
for the spin, so it is not surprising that just about anything wiII cause the 
entropy to increase. What about starting with a more general initiaI state? 
Schmidt teIIs us that (in a suitable basis) the most general state can be 
written 

I&) = &ill)2 @ ll)l + fil2)2 @ 131. 02) 

It is simple to show that if one requires evolution ‘which generalizes Eq (2) 
to give 

l&l + IlJr) (13) 
= fi((T 1112 It) @ l-91 + (1 llh II) 8 PM (14) 

+G((T 1% IT) @ WI + (1 1% II) @ PM (15) 

then_one must have increasing (or constant) entropy of the spin (-t&sin(~)]) 
as I$<) + I$,). Thus “good measurement” appears to be closely Iinked with 
increasing entropy, evesi for-high entropy initial states. (Note that I have 
chosen all four enviromnaxt states, IA)*, ~B)I, IC),, and ]D)r to be mu- 
tualIy orthogonal. This means that in I4t) the environment has a record 
of whether the spin is up or down, und which term of Eq (12) has been 
“measured” .) 

7 Conclusions 

The ideas put forward by Zch 1973, Zurek 1982, Joos and Zeh 1985, and 
Unruh and Zurek 1989, have sufficiently de-mystified the notion of wave 
function collapse that on= can actually unitatiIy follow the evolution of a 
system right throngh the collapse process. I have investigated a simple sys- 
tem ++r exhibits “wavefunction collapse”. I find Zeh’s idea of watching 
the m&&ion of the eigenstates of the reduced density matrix particularly 
app&&. This approach aUows one to follow exactly the evolution of the 
co& among subsystems. It also allows one to visualize the &apse 
process quite explicitly, as illustrated in Fig 2. 

I also applied the ‘%onsistent histories” analysis (of Griftiths 1984, Omnes 
1988, and G&Mann and Hartle 1990) to the same system. This approach 
allows one to consider may different sets of histories for the system. In 
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the example studied here, many different sets passed the consistency test. 
It is intriguing that one set of consistent histories for the spin did not re- 
flect the interesting evolution of the correlations between the spin and the 
environment. That set of histories would look the same for a static spin, 
decoupled from the environment. Other consistent histories exhibited quite 
direct links to the “quantum measurement” process underway. 

I have described a system which exhibits interesting behavior, both in 
terms of evolving correlstions, and in terms of consistent histories. AII 
the behavior discussed here lends itself to simple explanation in terms of 
the nature of the Hamiltonian and the initial state. Understanding this 
relationship is one of the main goals of this work, and it wilI be spelled out 
in a future publication. 
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